Improved precision on the radius of the nearby super - Earth 55
نویسندگان
چکیده
We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 μm. An individual analysis of these new data leads to a planet radius of 2.21+0.15 −0.16 R⊕, which agrees well with the values previously derived from the MOST and Spitzer transit discovery data. A global analysis of both Spitzer transit time-series improves the precision on the radius of the planet at 4.5 μm to 2.20 ± 0.12 R⊕. We also performed an independent analysis of the MOST data, paying particular attention to the influence of the systematic effects of instrumental origin on the derived parameters and errors by including them in a global model instead of performing a preliminary detrending-filtering processing. We deduce an optical planet radius of 2.04± 0.15 R⊕ from this reanalysis of MOST data, which is consistent with the previous MOST result and with our Spitzer infrared radius. Assuming the achromaticity of the transit depth, we performed a global analysis combining Spitzer and MOST data that results in a planet radius of 2.17 ± 0.10 R⊕ (13, 820 ± 620 km). These results point to 55 Cnc e having a gaseous envelope overlying a rocky nucleus, in agreement with previous works. A plausible composition for the envelope is water which would be in super-critical form given the equilibrium temperature of the planet.
منابع مشابه
Improved precision on the radius of the nearby super - Earth 55 Cnc e
We report on new transit photometry for the super-Earth 55 Cnc e obtained with Warm Spitzer/IRAC at 4.5 μm. An individual analysis of these new data leads to a planet radius of 2.21+0.15 −0.16 R⊕, which agrees well with the values previously derived from the MOST and Spitzer transit discovery data. A global analysis of both Spitzer transit time-series improves the precision on the radius of the...
متن کاملOptimal measures for characterizing water-rich super-Earths
The detection and atmospheric characterization of super-Earths is one of the major frontiers of exoplanetary science. Currently, extensive efforts are underway to detect molecules, particularly H2O, in super-Earth atmospheres. In the present work, we develop a systematic set of strategies to identify and observe potentially H2O-rich super-Earths that provide the best prospects for characterizin...
متن کاملDetection of a transit of the super-Earth 55 Cancri e with warm Spitzer⋆
We report on the detection of a transit of the super-Earth 55 Cnc e with warm Spitzer in IRAC’s 4.5 μm band. Our MCMC analysis includes an extensive modeling of the systematic effects affecting warm Spitzer photometry, and yields a transit depth of 410±63 ppm, which translates to a planetary radius of 2.08 −0.17 R⊕ as measured in IRAC 4.5 μm channel. A planetary mass of 7.81 +0.58 −0.53 M⊕ is d...
متن کاملA Super-earth Transiting a Naked-eye Star
We have detected transits of the innermost planet “e” orbiting 55 Cnc (V = 6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 d) and phase that had been predicted by Dawson & Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the star’s mas...
متن کاملar X iv : a st ro - p h / 06 10 12 2 v 1 4 O ct 2 00 6 Radius and Structure Models of the first Super - Earth Planet
With improving methods and surveys, the young field of extrasolar planets has recently expanded into a qualitatively new domain terrestrial (mostly rocky) planets. The first such planets were discovered during the past year, judging by their measured masses of less than 10 Earth-masses (M⊕) or Super-Earths. They are introducing a novel physical regime that has not been explored before as such p...
متن کامل